数学高考考试技巧有哪些

懂副业 24 0

数学高考考试技巧有哪些

考试书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。以下是小编整理的数学高考考试技巧,希望可以提供给大家进行参考和借鉴。

数学高考考试技巧有哪些 第1张

数学高考考试技巧

1、进入考试先审题

考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。

你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。

2、迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:

1)顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。

2)对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。

3)做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。

高中数学怎么提分

1、加强学法指导,培养良好的学习习惯,良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习的几个方面。

2、学好数学的方法就是要大量做题,反复去做,题做多了自然就知道哪些方面需要自己去加强学习,即使你不会做这道题,你也会找到一些解题的思路和技巧。

随时抱着空杯心态,俗话说得好,好脑瓜也赶不上一个烂笔头就是这个道理,多做题然后整理错题,及时回顾知识点,久而久之,你才能把它变成是你自己的东西。

3、专攻知识遗漏,专项的练习在于提高,在于清理知识的遗漏,对于经常做也不会的,或者也错的知识,应该多花一些时间来专项突破,这个方法对于提高成绩还是非常快速多的。

高中数学学习方法

1、课前预习:上课前要做预习,课前预习能提前了解将要学习的知识。

2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。

3、课后复习:通预习一样,也是行之有效的方法。

4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。

5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。

6、建立纠错本:把经常出错的题目集中在一起。

7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。

高考数学冲刺复习技巧

要注意构建完整的知识网络,不要盲目地做题,不要急于攻难度大的“综合题、探究题”,复习要以中档题为主,选题要典型,要深刻理解概念,抓住问题的本质,抓住知识间的相互联系。高考题大多数都很常规,只不过问题的情景、设问的角度改变了一下,因此,建议考生在首轮复习中,不要盲目地自己找题,而应在老师的指导下,精做题。

数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的的,其中的关键在于对待题目的态度和处理解题的方式上。

高中数学解题有效方法

一、数形结合法

高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

二、排除解题法

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

三、方程解题法

很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。例如,题目为“双曲线C的离心率是2,其焦点主要为F1和F2,双曲线C上有一点A,如果|F1A|=2|F2A|,求cos∠AF2F1的值。”

这个问题中存在着较抽象的数量关系,如果直接利用已知条件求cos∠AF2F1的值,不仅会增加我们的解题步骤,而且很容易出现错误,所以我们可以利用方程解题法来解决这个问题。首先,由已知条件双曲线C的离心率是2可得出C=2a;然后可根据双曲线上点A建立表达式,2a=|F1A|-|F2A|,所以可计算出|F1A|=4a,|F2A|=2a,|F1F2|=2c;最后我们可以通过余弦定理建立方程式,

所以最后我们可以得出cos∠AF2F1的值为。