高中数学提分有效方法(详细)

懂副业 25 0

高中数学提分有效方法(详细)

数学运算的准确性。为了提高运算的速度,收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。以下是小编整理的高中数学提分有效方法,希望可以提供给大家进行参考和借鉴。

高中数学提分有效方法(详细) 第1张

高中数学提分有效方法

1、夯实数学基础的方法。首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。

2、数学正确的题海战术方法。想学好数学,大量刷题确实很有必要,但你真的会刷题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。

高考数学在复习时的注意事项

一、夯实基础,知识与能力并重。没有数学基础谈不到能力,复习要真正地回到重视基础的轨道上来。这里的基础不是指针对考试、机械重复的训练,而是指要搞清数学基本原理、基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。同时,对基础知识进行全面回顾,并形成自己的知识体系。

二、复习中要把注意力放在培养自己的思维能力上。培养自己独立解决问题的能力始终是数学复习的出发点与落脚点,要在体验知识的过程中,适时进行探究式、开放式题目的研究和学习,深刻领悟蕴涵在其中的数学思想方法,并加以自觉的应用,力求做到使自己的理性思维能力、分析问题和解决问题的能力有切实的提高。

三、讲究复习策略。在第一轮复习中,要注意构建完整的知识网络,不要盲目地做题,不要急于攻难度大的“综合题、探究题”。数学复习要以中档题为主,选题要典型,要深刻理解概念、抓住问题的本质,抓住知识间的相互联系。高考数学题大多数都很常规,只不过问题的情景,设问的角度改变了一下。因此,建议大家在首轮复习中,不要盲目地自己找题,而应在老师的指导下,精做题。

四、加强做题后的反思。学习数学必须要做题,做题一定要独立。做题前要把老师上课时复习的知识再回顾一下,对所学的知识结构要有一个完整的清楚的认识,不留下任何知识的盲点,对所涉及的解题方法要深刻领会。

高中数学常用定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、角形两边的和大于第三边

16、角形两边的差小于第三边

17、三角形内角和定理三角形三个内角的和等于180°

18、直角三角形的两个锐角互余

19、三角形的一个外角等于和它不相邻的两个内角的和

20、三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24、有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS)有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27、在角的平分线上的点到这个角的两边的距离相等

28、到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31、等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、三个角都相等的三角形是等边三角形

36、有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、关于某条直线对称的两个图形是全等形

43、如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48、四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理n边形的内角的和等于(n-2)×180°

51、任意多边的外角和等于360°

52、平行四边形的对角相等

53、平行四边形的对边相等

54、夹在两条平行线间的平行线段相等

55、平行四边形的对角线互相平分

56、两组对角分别相等的四边形是平行四边形

57、两组对边分别相等的四边形是平行四边形

58、对角线互相平分的四边形是平行四边形

59、一组对边平行相等的四边形是平行四边形

60、矩形的四个角都是直角

61、矩形的对角线相等

62、有三个角是直角的四边形是矩形

63、对角线相等的平行四边形是矩形

64、菱形的四条边都相等

65、菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、四边都相等的四边形是菱形

68、对角线互相垂直的平行四边形是菱形

69、正方形的四个角都是直角,四条边都相等

70、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、关于中心对称的两个图形是全等的

72、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形